# FAMU-FSU College of Engineering Department of Mechanical, Electrical, and Computer Engineering

Team 315 Team Members: Colby Hackett, Jimmy Lu, Cameron Sayers, Morgan Skinner, Jackie Ou, Jonathan Tooby

Date: 10/4/24

Functional Decomposition

## Tables of Contents

| Cover page              | 1   |
|-------------------------|-----|
| Table of contents       | 2   |
| Introduction page       | 3   |
| Function Tree           | 4   |
| Cross-Reference Table   | 5   |
| Decomposition Level     | 6   |
| Description of Modules; | 7-9 |
| Summary                 | 10  |

### Introduction

The purpose of this document is to provide an in-depth functional analysis of the systems involved in our senior design project: a drone flight simulator with AI integration. By methodically decomposing the project into its core functions and sub-functions, we aim to gain a detailed understanding of the technical requirements, dependencies, and interrelations of each system component. This structured breakdown will clarify the project's overall scope and define the specific actions required for successful completion. To achieve this, the document is organized into several key sections, including a function tree, which visually represents the hierarchical structure of the system's functions, and a cross-reference table that outlines the interaction between various functions and project requirements. Additionally, the decomposition levels will guide us through the progressively detailed tasks within each major system, ensuring that every aspect of the project is accounted for and planned methodically. This analysis serves as a roadmap for our team, providing a clear vision and structured plan to guide us through each phase of development. With this comprehensive approach, we ensure that every function and sub-function is fully understood, enabling us to deliver a robust, well-executed final product.

### Function Tree



|                                      |                            | Sy                      | vstem               |              |       |
|--------------------------------------|----------------------------|-------------------------|---------------------|--------------|-------|
| Function                             | Control<br>Drone<br>flight | Simulate<br>environment | Simulate<br>physics | Integrate AI | Needs |
| Process user input                   | Х                          |                         |                     |              | 6     |
| Adjust thrust and direction          | Х                          |                         |                     |              | 6     |
| Generate 3D<br>terrain               |                            | Х                       |                     |              | 2,5   |
| Display<br>environment               |                            | Х                       |                     |              | 2,5   |
| Apply gravity<br>and<br>aerodynamics |                            |                         | Х                   |              | 1     |
| Handle<br>collisions                 |                            |                         | Х                   |              | 1     |
| Collect data                         |                            |                         |                     | X            | 4     |
| Process data                         |                            |                         |                     | X            | 4     |

Need 3 is making the whole system portable, which is not a function of the actual simulation itself.

## Decomposition levels

- 1. Control drone flight
  - a. Process user input from controller or keyboard
    - i. Translates user input into realistic drone movements in the simulation
    - ii. Provides feedback (vibration) based on simulation circumstances
  - b. Thrust and Direction Control
    - i. Adjust throttle (altitude control)
    - ii. Adjust pitch, roll, and yaw (orientation control)
- 2. Simulate environment
  - a. Terrain Generation
    - i. Create 3D objects (terrain, obstacles)
    - ii. Use Rigidbody planes for environmental physics

#### 3. Simulate Physics

- a. Gravity and Aerodynamics
  - i. Apply gravity to the drone (weight)
  - ii. Simulate drag, lift, and other aerodynamic forces
- b. Collision Handling
  - i. Use Box Collider and Rigidbody components (Unity-based physics)

#### 4. Integrate AI

- a. Data Collection
  - i. Capture flight and user data
- b. Process data
  - i. Use data to train ML or AI model

# Description of modules

| Level 1       |                                                                                                                    |
|---------------|--------------------------------------------------------------------------------------------------------------------|
| Module        | Drone flight control                                                                                               |
| Input         | User input from controller or keyboard                                                                             |
| Output        | Drone movement (thrust, yaw, pitch, roll) in the simulation                                                        |
| Functionality | Translates user input into realistic drone movements, controlling thrust, yaw, pitch, and roll to simulate flight. |

| Module        | Simulate Environment                                                                                                                |
|---------------|-------------------------------------------------------------------------------------------------------------------------------------|
| Input         | Simulation settings and prebuilt 3D objects                                                                                         |
| Output        | 3D terrain and environment visuals (obstacles, scenery)                                                                             |
| Functionality | Generates the 3D environment, including terrain and obstacles, for the drone to interact with, creating a dynamic simulation space. |

| Module        | Simulate Physics                                                                                                                                            |
|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Input         | Drone position, velocity, environmental factors                                                                                                             |
| Output        | Gravity, aerodynamics, and collision effects on the drone                                                                                                   |
| Functionality | Simulates realistic physical interactions such as gravity,<br>aerodynamics, and collisions, adjusting the drone's movement based<br>on environmental forces |

| Module        | Integrate AI                                               |
|---------------|------------------------------------------------------------|
| Input         | Flight data and user input                                 |
| Output        | AI-driven decisions                                        |
| Functionality | Uses flight and user data to inform or train AI algorithms |

| Module        | Process User Input                                                                                                                       |
|---------------|------------------------------------------------------------------------------------------------------------------------------------------|
| Input         | Wired or wireless connection to simulation                                                                                               |
| Output        | Drone movement signals (direction, throttle)                                                                                             |
| Functionality | Processes user inputs and translates them into movement signals that control the drone's thrust, yaw, pitch, and roll in the simulation. |

## Level 2

| Module        | Thrust and Direction Control                                                                                                      |
|---------------|-----------------------------------------------------------------------------------------------------------------------------------|
| Input         | Processed user input (throttle, direction)                                                                                        |
| Output        | Drone altitude (throttle) and orientation (yaw, pitch, roll)                                                                      |
| Functionality | Controls the drone's thrust (altitude) and direction (yaw, pitch, roll), enabling smooth and precise movements in the simulation. |

| Module        | Terrain Generation                                                                                                 |
|---------------|--------------------------------------------------------------------------------------------------------------------|
| Input         | Terrain parameters and prebuilt unity assets                                                                       |
| Output        | 3D terrain and obstacle models                                                                                     |
| Functionality | Generates the simulation environment using 3D objects, including terrain and obstacles, for the drone to navigate. |

| Module        | Rigidbody Planes                                                                                    |
|---------------|-----------------------------------------------------------------------------------------------------|
| Input         | Unity's Physics settings for terrain                                                                |
| Output        | Physics-enabled environment objects                                                                 |
| Functionality | Applies Unity's Rigidbody physics to environment objects for realistic interactions with the drone. |

| Module        | Gravity and Aerodynamics Simulation                                                                     |
|---------------|---------------------------------------------------------------------------------------------------------|
| Input         | Drone mass, velocity, and environmental conditions                                                      |
| Output        | Simulated forces (gravity, drag, lift) on the drone                                                     |
| Functionality | Simulates gravity and aerodynamic effects on the drone, including weight and drag forces during flight. |

| Module        | Collision Handling                                                                                                                 |
|---------------|------------------------------------------------------------------------------------------------------------------------------------|
| Input         | Drone's position and velocity, surrounding objects                                                                                 |
| Output        | Collision responses                                                                                                                |
| Functionality | Detects collisions between the drone and obstacles, applying Unity's<br>Box Collider and Rigidbody to handle the resulting impact. |

| Module        | Data Collection                                                                         |
|---------------|-----------------------------------------------------------------------------------------|
| Input         | Flight data and user inputs                                                             |
| Output        | Usable data for the AI algorithm                                                        |
| Functionality | Captures data from the drone's flight or user inputs for analysis or AI model training. |

| Module        | Data Processing for AI                                                                                         |
|---------------|----------------------------------------------------------------------------------------------------------------|
| Input         | Captured flight and user data                                                                                  |
| Output        | AI-driven outputs or model training                                                                            |
| Functionality | Processes flight data for machine learning models, improving AI-<br>driven decision-making for future flights. |

### Summary

Breaking down a project into different functions is helpful in planning the final product as a whole. It allows the team to create various sections of the project and test their functions before moving on to another system that relies on the previously implemented system. This modular approach ensures that each component works independently and reduces the risk of errors cascading through the entire project. By isolating subsystems, debugging becomes more manageable, and individual team members can work in parallel, speeding up development. Additionally, it provides flexibility, enabling easier updates or changes to specific parts without overhauling the entire system. In the context of larger projects, such as a VR drone, this method enhances scalability and simplifies the integration of advanced features as the project evolves.